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Abstract— Impedance control is well-suited to robot manip-
ulation applications because it gives the designer a measure
of control over how the manipulator to conforms to the
environment. However, in the context of end-effector impedance
control when the robot manipulator is redundant with respect
to end-effector configuration, the question arises regarding how
to control the impedance of the redundant joints. This paper
considers multi-priority impedance control where a second-
priority joint space impedance operates in the null space of
a first-priority Cartesian impedance at the end-effector. A
control law is proposed that realizes both impedances while
observing the priority constraint such that a weighted quadratic
error function is optimized. This control law is shown to
be a generalization of several motion and impedance control
laws found in the literature. The paper makes explicit two
forms of the control law. In the first, parametrization by
passive inertia values allows the control law to be implemented
without requiring end-effector force measurements. In the
second, a class of parametrizations is introduced that makes
the null space impedance independent of end-effector forces.
The theoretical results are illustrated in simulation.

I. INTRODUCTION1

Recently, there has been a trend toward building torque-
controlled rather than position-controlled manipulators with
low viscous and coulomb friction. Manipulators such as
the Barrett whole arm manipulator (WAM) [1], the DLR
lightweight arm [2], and Robonaut 2 [3] are all torque
controlled. For these manipulators, impedance control is
an attractive option because of its stability when making
or breaking contact with the environment. Nevertheless,
relatively little research exists on the subject of multi-priority
impedance control analogous to multi-priority position con-
trol. In multi-priority position control, low-priority position
objectives are realized in the null space of the primary end-
effector position objective [4]. Similarly, this paper proposes
a controller that regulates manipulator impedance such that
a first-priority impedance objective is always met and a
second-priority impedance is met to as great an extent as
possible without violating constraints associated with the
first-priority impedance. This paper focuses on the spe-
cial case where the first-priority impedance is defined at
the end-effector in Cartesian space and the second-priority
impedance is defined in joint space. The case where the
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second-priority impedance is defined in Cartesian space for a
separate end-effector is addressed in a companion paper [5].

Multi-priority control in general has been studied ex-
tensively. Many early approaches calculated joint velocities
that attempt to achieve a second-priority objective (such as
avoiding obstacles or manipulator singularities) while achiev-
ing a desired end-effector velocity [6], [7], [8]. Chiaverini
considers a damped-least-squares version of the control law
that is robust to algorithmic singularities [9]. Antonelli
provides a Lyapunov analysis demonstrating that the ba-
sic approach is stable [10]. Related approaches have been
applied in more general contexts [11], [12]. A significant
body of work explores the general problem of impedance
control in the context of redundant manipulators. Building
on Hogan’s early work [13], Natale et. al. propose a version
of the impedance controller that correctly handles angular
impedances [14]. Albu-Schaffer and Hirzinger propose a
dual-priority impedance architecture where the end-effector
impedance and null space joint impedance are controlled
separately using a stiffness formulation [15] and Oh et. al.
propose an impedance control formulation where task and
redundant space tasks are dynamically decoupled [16]. Ott et.
al. demonstrate stability even though the redundant space is
non-integrable [17]. Perhaps the most extensive work regard-
ing multi-priority impedance control is by Sentis and Khatib
who proposed a multi-priority framework where multiple
Cartesian acceleration, force, or impedance objectives can
operate with a specified priority [18], [19]. This paper can
be viewed as a generalization of that approach to arbitrary
second-priority optimization criteria.

The current work was motivated by the need to control the
impedance of the Robonaut 2 arms both in the operational
space and the redundant space. We propose a control law
that minimizes a weighted quadratic optimization criterion
defined with respect to the second-priority impedance ob-
jective. The resulting control law is stable and that it turns
out to be a generalization of several motion and impedance
control laws found in the literature [20], [21], [22]. We show
that the closed-loop null-space dynamics are independent of
end-effector loads whenever the second-priority optimization
criterion is identical to the desired second-priority inertia.
Finally, we explicitly write the control law for the special
case where the desired inertias are all passive and force
measurements are not needed to implement the control law.
Our approach to the problem is similar to that taken in [23].

II. BACKGROUND

The dynamic motion of a robot arm with n revolute joints
is typically understood in terms of the following generalized



equation of motion:

Mq̈+η = τa + τ,

where M is the n×n manipulator inertia matrix, q̈ is an n-
vector of manipulator joint accelerations, τ is an n-vector of
joint torques resulting from externally applied loads, τa is a
vector of actuator torques, and η describes the sum of fric-
tional, Coriolis, centrifugal, and gravitational torques [24].
The dependence of these terms on manipulator configuration
is implicitly assumed. In order to simplify notation, we
introduce the following substitution:

τa = u+η ,

such that the equation of motion can be expressed in terms
of a command vector, u:

Mq̈ = u+ τ. (1)

It is frequently useful to design controllers defined in
operational space coordinates rather than in joint space.
While the term “operational space” may refer to any co-
ordinate system relevant to a robot task, it usually refers
to the space of positions and orientations of the end-
effector represented by a parametrization of SE(3). In this
paper, SE(3) is parametrized using exponential coordinates
whereby a Cartesian pose is encoded by a 6-vector with the
first three numbers describing position and the last three
numbers describing orientation using the axis-angle repre-
sentation [25]. The Cartesian velocity of the end-effector
will be represented as a twist and the acceleration as the
derivative of twist. Similarly, loads in Cartesian space will
be written as wrenches (six-vector that concatenates a force
and a moment) [25]. The end-effector Jacobian, J, relates
joint velocities, q̇, to Cartesian twists at the point of reference
(POR), ẋ: ẋ = Jq̇.

Impedance control can be used to realize a second-order
linear impedance in Cartesian coordinates [20], [26]. The
goal is to control end-effector inertia and damping as well as
stiffness so as to realize the following closed loop behavior:

Ω ¨̃x+B ˙̃x+Kx̃ = f , (2)

where Ω, B, and K are the desired Cartesian inertia, damping,
and stiffness, respectively. x̃ is the end-effector Cartesian
pose error, ˙̃x = ẋ− ẋ∗ is the Cartesian twist error, ¨̃x = ẍ− ẍ∗

is the Cartesian acceleration error, and f is the Cartesian
wrench. Re-writing Equation 2 in terms of ẍ and using the
fact that ẍ = Jq̈+ J̇q̇, we have:

q̈ = J+
[
ẍ∗+Ω

−1 ( f −B ˙̃x−Kx̃
)
− J̇q̇

]
+Nλ ,

where J+ denotes the Moore-Penrose pseudo-inverse of the
Jacobian, N is the right-null space of J, and λ is arbitrary.
Setting λ to zero and substituting into the equation of motion
(Equation 1), we have: [26], [23]

u = MJ+
[
ẍ∗+Ω

−1 ( f −B ˙̃x−Kx̃
)
− J̇q̇

]
− τ,

which, using the Jacobian torque relationship, τ = JT f ,
becomes:

u = MJ+
[
ẍ∗+Ω

−1 ( f −B ˙̃x−Kx̃
)
− J̇q̇

]
− JT f . (3)

This control law allows the control system to realize an
arbitrary second-order end-effector impedance of the form
in Equation 2.

III. MULTIPLE PRIORITY IMPEDANCE CONTROL

A. Optimization Criterion

First, it must be recognized that a first-priority end-effector
Cartesian space impedance and a second-priority joint space
impedance are incompatible impedances. Since the joint
space impedance completely specifies the behavior of each
joint, it is not possible to also realize an arbitrary end-
effector impedance simultaneously. Since the two impedance
objectives are incompatible, an optimization criterion must
be selected that determines the impedance that is actually
realized. Following [23], this paper assumes the criterion to
be a weighted quadratic function of acceleration. Therefore,
in the case of a primary Cartesian space impedance and
a subordinate joint space impedance, the controller must
optimize a weighted quadratic of the joint accelerations
among the accelerations that realize the primary Cartesian
space impedance.

Define the second-priority joint space impedance to be:

Ω jq̈+ τ
∗ = τ, (4)

where τ∗ = B jq̇ + K jq̃. This impedance law is defined in
terms of τ , the net torques acting on the joints caused by
externally applied loads (wrenches) applied to the manipula-
tor. For example, suppose that there are k loads, f1 . . . fk, in
addition to the end-effector wrench, f. Then, then the joint
torque generated by these loads is:

τ = JT f+
k

∑
i=1

JT
i fi, (5)

where Ji is the manipulator Jacobian matrix associated with
the ith contact load.

It is possible to optimize for the second-priority joint space
impedance of Equation 4 by defining the following weighted
quadratic function:

ε = (q̈− q̈des)
TW (q̈− q̈des), (6)

where the desired joint accelerations, q̈des, are taken to be
those required by Equation 4. As a result, the optimization
criterion is: ε = zT z where

z =W
1
2

(
q̈−Ω

−1
j (τ− τ

∗)
)
. (7)

The multi-priority control objective is to minimize Equa-
tion 7 subject to realizing the first-priority Cartesian
impedance of Equation 2.

B. Control law

Equation 2 defines the first-priority impedance for the end-
effector in Cartesian space:

Ω ¨̃x+ f ∗ = f ,



where f ∗ = B ˙̃x+Kx̃. Re-writing this as a constraint on joint
accelerations, we have:

Jq̈ = ẍ∗+Ω
−1( f − f ∗)− J̇q̇. (8)

We must find joint accelerations that minimize ε from
among the solutions to Equation 8. In order to accomplish
this, solve Equation 7 for q̈,

q̈ =W−
1
2 z+Ω

−1
j (τ− τ

∗), (9)

and substitute into Equation 8:

JW−
1
2 z+ JΩ

−1
j (τ− τ

∗) = ẍ∗+Ω
−1( f − f ∗)− J̇q̇.

This is the constraint equation written in terms of the
optimization variable, z. The least-squares solution for z is
found by taking the pseudo-inverse:

z = (JW−
1
2 )+

[
ẍ∗+Ω

−1( f − f ∗)− J̇q̇− JΩ
−1
j (τ− τ

∗)
]
.

Substituting back into Equation 9, the desired joint acceler-
ation is:

q̈ = J+W
[
ẍ∗+Ω

−1( f − f ∗)− J̇q̇
]
+NW Ω

−1
j (τ− τ

∗), (10)

where
J+W =W−1JT (JW−1JT )−1 (11)

is the weighted pseudo-inverse for the matrix W , and we
define

NW = I− J+W J

to be the weighted null space projection matrix. Substituting
back into the equation of motion (Equation 1), we have:

u = MJ+W
[
ẍ∗+Ω

−1( f − f ∗)− J̇q̇
]

+MNW Ω
−1
j (τ− τ

∗)− τ. (12)

It can be verified that Equation 12 realizes the primary
end-effector impedance (Equation 2) regardless of the value
of the weighting matrix, W . However, the choice for W in
the optimization criterion does affect how the subordinate
joint space control law is realized. The effect of the second-
priority impedance can be analyzed by considering the
closed-loop behavior in the weighted null space. Multiplying
both sides of Equation 10 by NW , we have:

NW q̈+NW Ω
−1
j τ
∗ = NW Ω

−1
j τ. (13)

Note the similarities between the above and the desired
second-priority impedance of Equation 4. Essentially, Equa-
tion 12 realizes the second-priority joint space impedance in
the range space of NW .

C. Relationship to the literature

Equation 12 can be viewed as a generalization of several
standard motion and impedance control laws found in the
literature. First, consider the case where it is assumed that
no external loads are applied at all (τ = 0), the desired
Cartesian inertia is identity (Ω = I), and the null space term

is ignored. Then this control law reduces to inverse dynamics
control [27], [21]:

u = MJ+
[
ẍ∗− f ∗− J̇q̇

]
,

where the stiffness and damping terms in f ∗ are interpreted
as PD gains on position error.

Second, suppose that no external loads are applied, the
desired Cartesian inertia is identity (Ω = I), the desired
second-priority joint-space inertia is set to the passive value
(Ω j = M), and the weighting matrix is set of the passive
inertia matrix (W = M). In this case, note that:

MJ+W = MM−1JT (JM−1JT )−1

= JT
Λ,

where
Λ = (JM−1JT )−1 (14)

is the passive manipulator inertia described in end-effector
Cartesian coordinates. Also note that:

MNMM−1 = M(I−M−1JT (JM−1JT )−1J)M−1

= (I− JT (JM−1JT )−1JM−1)

= NT
M.

Then, Equation 12 becomes Khatib’s operational space con-
troller (also known as the Gauss controller) [22], [21]:

u = JT
Λ
(
ẍ∗− f ∗− J̇q̇

)
−NT

Mτ
∗.

Next, assume that all external loads are applied to the end-
effector (τ = JT f), the weighting matrix is set to identity
(W = I), and the null space term is ignored. Then Equa-
tion 12 reduces to a variant of the impedance control law of
Equation 3 [26]:

u = MJ+
[
ẍ∗+Ω

−1( f − f ∗)− J̇q̇
]
− JT f ,

where it has been assumed that all external loads are applied
at the end-effector.

Finally, suppose that all external loads are applied to the
end-effector (τ = JT f), the weighting matrix is set to the
passive inertia matrix (W = M), and the null space term is
ignored. Then, Equation 12 reduces to Hogan’s impedance
control law [20]:

u = JT
Λ
[
ẍ∗+Ω

−1 ( f − f ∗)− J̇q̇
]
− JT f .

IV. ANALYSIS

A. Stability

The stability of Equation 12 can be established using a
Lyapunov analysis. For the purposes of the analysis, assume
that the externally applied loads and the desired accelerations
are zero. Define the Lyapunov function to be:

V = ẋT ẋ+ x̃T
Ω
−1Kx̃+ q̇T NT

w Nwq̇+ q̃T NT
w NwΩ

−1
j K jq̃. (15)

Since V spans the entire joint space, demonstrating that V̇
is negative semi-definite is sufficient to show stability. The
gradient is:

V̇ = 2ẋT ẍ+2x̃T
Ω
−1Kẋ+2q̇T NT

w Nwq̈+2q̃T NT
w NwΩ

−1
j K jq̇.



We solve for ẍ and q̈ by substituting Equation 12 into the
system dynamics (Equation 1). Substituting these into the
above equation for V̇ , we get:

V̇ =−2ẋT
Ω
−1Kẋ−2q̇T NT

w NwΩ
−1
j K jq̇,

which is negative semi-definite. Since q̃ 6= 0 with q̇ = 0 is
not an equilibrium configuration, we can conclude that the
system is globally asymptotically stable at x̃= 0 and Nwq̃= 0
with q̇ = 0.

B. Independent null space dynamics

A key issue regarding multi-priority impedance control
is how externally applied loads at the end-effector affect
the second-priority closed-loop impedance. Equation 13 de-
scribes the manipulator dynamics that are orthogonal to the
end-effector dynamics. Note that for an arbitrary weighting
matrix, W , the dynamics of Equation 13 depend on the forces
applied at the end-effector because NW Ω

−1
j JT f may be non-

zero. This also has a steady-state effect because Equation 13
predicts a joint error of q̃ = K−1

j JT f when q̈ and q̇ are zero.
However, an interesting case occurs in Equation 13 when

W = Ω j. In this case, we have:

Ω jNΩ j Ω
−1
j = Ω j(I−Ω

−1
j JT (JΩ

−1
j JT )−1J)Ω−1

j

= (I− JT (JΩ
−1
j JT )−1JΩ

−1
j )

= NT
Ω j
.

Therefore, when W = Ω j, Equation 13 can be re-written as:

NT
Ω j

Ω jq̈+NT
Ω j

τ
∗ = NT

Ω j
τ. (16)

While the above is similar to Equation 13, note that τ directly
multiplies through the transpose of the weighted null space
matrix. As a result, note that loads applied to the end-effector
are projected to zero:

NT
Ω j

τ = NT
Ω j

JT f

= 0.

Therefore, when W = Ω j, manipulator dynamics are inde-
pendent of end-effector loads in the column space of NT

Ω j
.

This form of Equation 12 is useful in force and impedance
control because unexpected end-effector loads will be de-
coupled from motion in the inertia-weighted manipulator
null space. For example, suppose that the second-priority
impedance law is parametrized with the passive manipulator
inertia but the weighting matrix is set to identity. Then, end-
effector loads will result in null space motions. However, if
the weighting matrix in Equation 12 is set to the passive iner-
tia matrix, then coupling disappears. Khatib makes a similar
point with regard to the Gauss controller [22]. However, the
Gauss controller exclusively sets the weighting matrix to the
passive manipulator inertia. The above indicates that similar
advantages can be obtained anytime the weighting matrix is
equal to the second-priority inertia matrix.

Fig. 1: Simulation of the Robonaut 2 arm. The simulations
applied a 20N end-effector (palm of the left hand) force in
the positive z direction.

C. Impedance control implementation without end-effector
load measurements

In some situations, it may be inconvenient to require
the presence of a load cell to implement the control law.
This sensing requirement can be circumvented by setting
the inertia matrices in the desired impedances to passive
values. In particular, recall that Λ is the passive manipulator
inertia described in Cartesian coordinates at the end-effector
(Equation 14). Then, by setting Ω = Λ and Ω j = M, the
control law of Equation 12 becomes:

u = MJ+W JM−1JT ( f − f ∗)+MJ+W
(
ẍ∗− J̇q̇

)
+MNW M−1(τ− τ

∗)− τ.

If JT f in the first term above is replaced with τ , the joint
torques resulting from externally applied torques, then τ

cancels out of the control law entirely and we are left with:

u = −MJ+W JM−1JT f ∗+MJ+W
(
ẍ∗− J̇q̇

)
−MNW M−1

τ
∗. (17)

Solving for ẍ, we have:

Λ ¨̃x+ f ∗ = J+
T

M τ. (18)

Although Equation 18 is not identical to the desired first-
priority Cartesian impedance (Equation 2), it is a close
approximation that does not use independent force or ac-
celeration sensing. When all loads are applied at the end
effector, Equation 18 reduces to Equation 2 (J+

T

M JT f = f ).
When loads are also applied elsewhere on the manipulator,
J+

T

M τ finds a least-squares estimate of the end-effector load.

V. SIMULATIONS

Two instances of Equation 17 with different optimization
weighting matrices are simulated. The first sets W to identity:

u =−MJ+JM−1JT f ∗−MJ+J̇q̇−MNM−1
τ
∗. (19)

We refer to this controller as the “minimum-acceleration”
impedance controller because it minimizes squared accel-
eration error measured with respect to the second-priority



Link Length Mass Ixx Iyy Izz
upper arm 0.38m 6.8Kg 0.082 0.082 0.0082

forearm 0.35m 5.5Kg 0.056 0.056 0.0056
palm 0.2m 2Kg 0.0004 0.0004 0.00004

TABLE I: Approximate dynamic parameters of Robonaut 2 arm used in the simulations. Izz is the moment of inertia about
the link axis. Ixx and Iyy are the remaining two orthogonal moments of inertia.
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Fig. 2: Simulation of the minimum-acceleration controller,
(a), and the Gauss principle controller, (b), responding to a
step force applied to the end-effector at time = 0.1 seconds.
Each plot shows the x, y, and z coordinates of the end-effector
as a function of time for the corresponding controller.

impedance objective. The second sets W to the passive inertia
matrix (W = M):

u =−JT f ∗− JT
ΛJ̇q̇−NT

Mτ
∗. (20)

We refer to this controller as the “Gauss principle”
impedance controller because when the optimization crite-
rion is parametrized by M, it corresponds to Gauss’ Principle
of Least Constraint [28].

These evaluations used a dynamic simulation of the
Robonaut 2 arm (dynamic parameters were approximated).
The arm was approximated by three links, illustrated in
Figure 1. The most proximal link was actuated by a roll-
pitch-roll shoulder. The elbow was a pitch joint followed
by a roll joint. The third link simulated a palm actuated
by a co-located pitch-yaw combination. The equations of
motion were generated using Autolev [29] based on the
dynamic parameters in Table I where, for the purposes of
calculating moment of inertia, the links were treated as long
rods. Numerical integration of simulation parameters was
performed using the Matlab ode45 variable step solver.

A. Simulation 1

The first simulation evaluated the dynamic response of
the two control laws in Equations 20 and 19 for a step force
input of 20N applied to the end-effector in the positive z
direction (see Figure 1) at time = 0.1 seconds. At time = 0
seconds, the simulation started with the manipulator elbow at
90 degrees and the first and third joints aligned. Both control
laws were parametrized in accordance with a first-priority
Cartesian end-effector impedance of

Λẍ+80ẋ+200x̃ = f ,
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Fig. 3: Simulation of the minimum-acceleration controller,
(solid line), and the Gauss principle controller, (dotted line),
responding to an external force applied to the end-effector
while J3 has a non-zero stiffness. The plot shows J3 motion.
Note that the acceleration-based controller does not return
J3 to its reference configuration.

and a second-priority joint space impedance of

Mq̈+ q̇ = τ,

where q is measured in radians. Since the second-priority
impedance did not have a stiffness term, its main purpose was
to stabilize the manipulator by providing null space damping.
x̃ was measured with respect to the initial arm configuration.
The results, illustrated in Figure 2, indicate that both control
laws realize the desired end-effector impedance. This is
expected because both control laws have the same dynamics
when solved for end-effector acceleration. As a result, we
conclude that the two control laws can have significant
differences only in their closed-loop null space behavior.

B. Simulation 2

The second simulation was identical to the first except
that the following second-priority impedance with a non-
zero stiffness was used, Mq̈+ q̇+25Σ3q̇+200Σ3q̃ = τ . As in
the first simulation, the arm started at a joint configuration
where the elbow was bent at 90 degrees and the first and
third joints were aligned. At time = 0.3 seconds, a 20N force
was applied to the end-effector. The results are shown in
Figure 3. The end-effector dynamics were similar to what
was observed in Simulation 1. The end-effector exhibited
an essentially decoupled Cartesian space impedance. Both
control laws result in a J3 displacement from equilibrium.
Using the Gauss principle law (the dotted line in Figure 3),
J3 is temporarily displaced from the reference. With the
acceleration-based law (the solid line), J3 also departs from



equilibrium. However, note that under the acceleration-based
law, J3 does not return to its reference configuration. This
difference was predicted by Equations 13 and 16. Writing
Equation 13 for the case of the acceleration law (Equa-
tion 19), we have:

Nq̈+NM−1
τ
∗ = NM−1JT f .

Since NM−1JT f may be non-zero, the acceleration-based
law is susceptible to the steady state displacement evidenced
in Figure 3. The closed-loop null space behavior of the
Gauss-based law (Equation 20),

NT
MMq̈+NT

Mτ
∗ = NT

MJT f ,

is not exposed to this steady-state displacement because
NT

MJT f is always zero.

VI. CONCLUSION

Multi-priority impedance control is defined as the problem
of realizing a first-priority impedance and a second-priority
impedance simultaneously where the first-priority impedance
is given the priority where conflicts arise. We restrict our
attention to the case where the first-priority impedance
objective is defined at the end-effector in Cartesian space
and the second-priority impedance is defined in joint space.
We solve for the control law that realizes the multi-priority
impedance where the optimization function is any weighted
quadratic function of acceleration. Regardless of the weight-
ing matrix chosen, the multi-priority control law realizes the
desired Cartesian impedance. However, we find that when
the weighting matrix matches the second-priority desired
inertia, then the resulting closed-loop null space impedance
is dynamically independent of end-effector loads. We show
that the resulting multi-priority control law can be viewed
as a generalization of several motion and impedance control
laws from the literature.

REFERENCES

[1] B. T. Inc., “Products - WAM Arm,”
http://www.barrett.com/robot/products-arm.htm.

[2] A. Albu-Schaffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimbock,
and G. Hirzinger, “The DLR lightweight robot lightweight design
and soft robotics control concepts for robots in human environments,”
Industrial Robot Journal, vol. 34, pp. 376–385, 2007.

[3] M. Diftler, J. Mehling, M. Abdallah, N. Radford, L. Bridgwater,
A. Sanders, S. Askew, M. Linn, J. Yamokoski, F. Permenter, B. Har-
grave, R. Platt, R. Savely, and R. Ambrose, “Robonaut 2 the first
humanoid robot in space,” in IEEE Int’l Conf. on Robotics and
Automation, 2011.

[4] A. Liegois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” IEEE Trans. Syst. Man Cyber-
netics, pp. 868–871, 1977.

[5] R. Platt, M. Abdallah, and C. Wampler, “Multipriority Cartesian
impedace control,” in Proceedings of 2010 Robotics: Science and
Systems, 2010.

[6] Y. Nakamura, Advanced Robotics Redundancy and Optimization.
Addison-Wesley, 1991.

[7] L. Sciavicco and B. Siciliano, “A solution algorithm to the inverse
kinematic problem for redundant manipulators,” IEEE Journal of
Robotics and Automation, vol. 4, no. 4, 1988.

[8] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed-
loop inverse kinematics schemes for constrained redundant manipu-
lators with task space augmentation and task priority strategy,” The
International Journal of Robotics Research, vol. 10, no. 4, pp. 410–
425, 1991.

[9] S. Chiaverini, “Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators,” IEEE Transac-
tions on Robotics and Automation, vol. 13, no. 3, pp. 398–410, 1997.

[10] G. Antonelli, “Stability analysis for prioritized closed-loop inverse
kinematic algorithms for redundant robotic systems,” IEEE Transac-
tions on Robotics, vol. 25, no. 5, pp. 985–994, 2009.

[11] M. Huber, “A hybrid architecture for adaptive robot control,” Ph.D.
dissertation, U. Massachusetts, 2000.

[12] N. Mansard and F. Chaumette, “Task sequencing for sensor-based
control,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 60–72,
2007.

[13] N. Hogan, “Impedance control - an approach to manipulation: theory,”
Journal of dynamic systems measurement and control, vol. 107, pp.
1–7, 1985.

[14] C. Natale, B. Siciliano, and L. Villani, “Spatial impedance control
of redundant manipulators,” in IEEE Int’l Conf. on Robotics and
Automation, 1999, pp. 1788–1793.

[15] A. Albu-Schffer and G. Hirzinger, “Cartesian impedance control
techniques for torque controlled light-weight robots,” in IEEE Int’l
Conf. on Robotics and Automation, 2002, pp. 657–663.

[16] Y. Oh, W. Chung, and Y. Youm, “Extended impedance control of
redundant manipulators based on weighted decomposition of joint
space,” Journal of Robotic Systems, vol. 15, no. 5, pp. 231–258, 1998.

[17] C. Ott, A. Kugi, and Y. Nakamura, “Resolving the problem of
non-integrability of nullspace velocities for compliance control of
redundant manipulators by using semi-definite lyapunov functions,”
in IEEE Int’l Conf. on Robotics and Automation, 2008, pp. 1999 –
2004.

[18] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” International Journal of
Humanoid Robotics, 2005.

[19] L. Sentis, “Synthesis and control of whole-body behaviors in hu-
manoid systems,” Ph.D. dissertation, Stanford University, July 2007.

[20] N. Hogan, “Stable execution of contact tasks using impedance con-
trol,” in IEEE Int’l Conf. on Robotics and Automation, vol. 4, 1987,
pp. 1047–1054.

[21] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational
space control: a theoretical and empirical comparison,” International
Journal of Robotics Research, vol. 27, pp. 737–757, 2008.

[22] O. Khatib, “A unified approach for motion and force control of robot
manipulators: the operational space formulation,” IEEE Journal of
robotics and automation, vol. 3, no. 1, pp. 43–53, 1987.

[23] J. Peters, M. Mistry, F. Udwadia, R. Cory, J. Nakanishi, and S. Schaal,
“A unifying methodology for the control of robotic systems,” in IEEE
Int’l Conf. on Robotics and Automation, 2008.

[24] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. John Wiley and Sons, Inc., 2005.

[25] R. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to
Robotic Manipulation. CRC Press, 1994.

[26] L. Sciavicco and B. Siciliano, Modelling and Control of Robot
Manipulators. Springer, 2000.

[27] P. Hsu, J. Hauser, and S. Sastry, “Dynamic control of redundant
manipulators,” Journal of Robotic Systems, vol. 6, pp. 133–148, 1989.

[28] H. Bruyninckx and O. Khatib, “Gauss’ principle and the dynamics
of redundant and constrained manipulators,” in IEEE Int’l Conf. on
Robotics and Automation, 2000.

[29] T. Kane and D. Levinson, “Dynamics online: Theory and implemen-
tation with Autolev,” Sunnyvale, CA: Online Dynamics, Inc., 1996.


